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A new method, developed in previous works by the author (partly with co-

authors), is presented which decides algorithmically, in principle by computer,

whether a combinatorial space tiling (T , �) is realizable in the d-dimensional

Euclidean space Ed (think of d = 2, 3, 4) or in other homogeneous spaces, e.g. in

Thurston’s 3-geometries:

E3; S3; H3; S2
�R; H2

�R; gSL2RSL2R; Nil; Sol:

Then our group � will be an isometry group of a projective metric 3-sphere PS3
ðR; h ; iÞ,

acting discontinuously on its above tiling T . The method is illustrated by a plane example

and by the well known rhombohedron tiling ðT ;�Þ, where � = R�33m is the Euclidean

space group No. 166 in International Tables for Crystallography.

1. A plane example for motivation

Our machinery will be based on a symbolic theory of tiling, i.e.

on the concept of the D symbol. Furthermore, we shall realize

tilings in Euclidean and non-Euclidean spaces by projective

metric geometries as well. Therefore, we shall motivate our

topic in a plane, first, to save describing large and complicated

theories, referring to arbitrary dimensional spaces, in general.

1.1. Consider the very popular tiling T in Fig. 1(a) with

symmetry group G ¼ p4mm. The fundamental domain

FG ¼ A0A1A2, with small parts of an octagon and a square,

characterizes all the tiling by the generating line reflections

m0 ðin side A1A2 ¼ m0Þ;

m1 ðin A0A2 ¼ m1Þ;

m2 ðin A0A1 ¼ m2Þ:

These are generators of G by a presentation

G ¼ p4mm :¼
�
m0;m1;m2 1

¼ m2
0 ¼ m2

1 ¼ m2
2 ¼ ðm0m1Þ

4

¼ ðm0m2Þ
2
¼ ðm1m2Þ

4
�
: ð1Þ

The second part of this presentation expresses the so-called

defining relations. Here 1 denotes the identity map and, for

example, m0m1 denotes a product map of the two reflections

(to read from left to right by our convention here), which is a

rotation of order 4 about the point A2, i.e. about 90� in the

negative (clockwise) direction.

To describe the tiling T in a combinatorial way, we intro-

duce its barycentric subdivision C invariant under G, with

I ¼ f0; 1; 2g labelled vertices and labelled sides according to

the opposite vertices. Namely, an i-dimensional centre is

labelled by i, i 2 I ¼ f0; 1; 2g. The symbols

�0 : � � � � � �; �1 : - - - -; �2 : ð2Þ

denote the sides of the barycentric triangles and the corre-

sponding adjacency operations �i as well (Fig. 1b).

Figure 1
A well known Archimedean tiling in the Euclidean plane with its D
diagram



Our notations

�iC
g :¼ �iðC

gÞ ¼ ð�iCÞ
g;

moreover ð�j�iÞC
ðg1g2Þ ¼ �jð�iC

ðg1g2ÞÞ ¼ ðð�j�iÞC
g1 Þ

g2 ; ð3Þ

C 2 C; g1; g2 2 G; ri; rj 2 RI

indicate the G invariance of the barycentric adjacencies.

Furthermore, if G acts (assumed) on the right, then the group

RI of adjacency operations acts on the left on the barycentric

subdivision C.

In Fig. 1(b), we denote by D1 the G orbit of a barycentric

triangle C1 of C in FG. Similarly, the G orbits D2 and D3 and

their adjacencies (induced from C) are introduced in the D

diagram D ¼ fD1;D2;D3g, where we have three vertices of D

according to the three different G orbits of C (see Fig. 1c).

Now, up to symmetry-respecting deformations, the D

diagram D together with the symmetric integral matrix func-

tion

M : D! NI�I; D 7!mijðDÞ;

with mijðD1Þ ¼ mijðD2Þ ¼

1 8 2

8 1 3

2 3 1

0
B@

1
CA; ð4Þ

mijðD3Þ ¼

1 4 2

4 1 3

2 3 1

0
B@

1
CA;

completely specifies the tiling ðT ;GÞ, with the group G in (1).

Here and throughout, N denotes the set of natural numbers

and the formal definition of M is, in general, as follows:

mijðDÞ ¼ min
n

m 2 N : ð�j�iÞ . . . ð�j�iÞð�j�iÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{m times

C ¼ C

C 2 D 2 D
o
: ð5Þ

Thus, m01ðD1Þ ¼ m01ðD2Þ ¼ 8 means in (4) that D1;D2 form

an octagon by �0; �1 operations; m01ðD3Þ ¼ 4 describes our

square tiles.

The entries m12ðD1Þ ¼ m12ðD2Þ ¼ m12ðD3Þ ¼ 3 just indicate

that three polygons meet at a vertex. The connectedness of

our D diagram minus �0 operation [by cancelling dotted

(� � � � � �) lines] means that we have exactly one G-equivalence

class of vertices. This is a criterion for Archimedean tilings.

Now we have a freedom: the octagons are not necessarily

regular, the vertex can be varied in the interior of segment

A0A1 (Figs. 1a, b).

By cancelling the �1 ð- - - -Þ operation from D, the two

remaining components just indicate the two G classes of edges

of T . Similarly, by cancelling �2 ð Þ operation from D, we

get the two tile classes of T under G.

1.2. Now imagine generalizations T ð2a; bÞ of our tiling with

the same D diagram as in Fig. 1(c), but with matrix function

mijðD1Þ ¼ mijðD2Þ ¼

1 2a 2

2a 1 3

2 3 1

0
B@

1
CA;

mijðD3Þ ¼

1 b 2

b 1 3

2 3 1

0
B@

1
CA; 2 � a 2 N; 3 � b 2 N:

ð6Þ

This means we choose our tiling group instead of (1) by the

following presentation:

Gð2a; bÞ :¼
�
m0;m1;m2 1

¼ m2
0 ¼ m2

1 ¼ m2
2 ¼ ðm0m1Þ

a

¼ ðm0m2Þ
2
¼ ðm1m2Þ

b
�
: ð7Þ

Imagine the reflection triangle FG in Fig. 1(a) with angles

�=b; �=2; �=a at A0;A1;A2; respectively, for an Archimedean

tiling by one b-gon and two 2a-gons about any vertex. We

know that the angular assumptions

> � S2

�

b
þ
�

2
þ
�

a
¼ � � E2

< �H2

ð8Þ

provide us with spherical (S2, e.g. b ¼ 4; a ¼ 3), Euclidean

[E2: ðb ¼ 4; a ¼ 4Þ or ðb ¼ 3; a ¼ 6Þ or ðb ¼ 6; a ¼ 3Þ] or

hyperbolic [H2, e.g. ðb ¼ 4; 5 � a 2 NÞ] tilings. Since the

situation is much more complicated in three-dimensional

spaces later on, we shall indicate the projective metric method

to the above plane cases (Fig. 2).

1.3. We consider for our fundamental triangle

FG ¼ A0A1A2 the real vector space V3ðRÞ spanned by a basis

OA0

��!
� a0, OA1

��!
� a1, OA2

��!
� a2 (Fig. 2). Here the equivalence

� means

x � y() y ¼ cx

with 0< c 2 R; x; y 2 V3 n f0g: ð9Þ

Thus we define a point ðxÞ ¼ ðyÞ of the projective metric

sphere PS2 over V3ðRÞ. Unifying opposite points (rays) ðxÞ

and ð�xÞ, we get the projective plane P2 from PS2. Dually, we

define the two-dimensional subspaces of V3, or the 1-rays of

the form space V3 by

u � v() v ¼ u 1
c

with 0< c 2 R; () ðuÞ ¼ ðvÞ; ð10Þ

ðxuÞ ¼ 0 means that ðxÞ I ðuÞ:

Acta Cryst. (2005). A61, 542–552 Emil Molnár � Combinatorial construction of tilings 543

research papers

Figure 2
A projective coordinate triangle to our fundamental domain FG in P2 or
in PS2. The plane by form class of b1 describes the line A0A2. The point
by b1

� ¼: b1 is its pole.



These describe that two lines (oriented circles) of PS2 are

coincident, and express the incidence I above of a point ðxÞ to

a line ðuÞ. This means each line (in space: plane, in general:

hyperplane) is characterized by a linear form class ðuÞ (with

boldface italic letter) over the vector space V3. This

means:

xu 2 R ðreal numbersÞ; ðc1x1 þ c2x2Þu ¼ c1ðx1uÞ þ c2ðx2uÞ

are required for any c1; c2
2 R and x1; x2 2 V3

ðvectorsÞ:

These forms u; v; . . . constitute the dual space V3 with a built-

in linear structure defined by

xðu1c1 þ u2c2Þ :¼ ðxu1Þc1 þ ðxu2Þc2

for any x 2 V3; c1; c2
2 R; u1; u2

2 V3;

as is well known from the linear algebra courses.

In Fig. 2, we have indicated that the side A0A2 of our FG is

described by the form b1 of V3. Thus the dual basis fb0; b1; b2
g

for V3 can be introduced by the ‘incidence relations’

ðaib
j
Þ ¼ �j

i ðthe Kronecker symbolÞ: ð11Þ

Now, we introduce projective collineations of PS2 by linear

transforms of V3 or dually of V3, up to constant factors as

projective freedom. For example, our reflections m0;m1;m2

can be described by

m0 :

a0

a1

a2

0
B@

1
CA!

�1 n p

0 1 0

0 0 1

0
B@

1
CA

a0

a1

a2

0
B@

1
CA

or b0 b1 b2
� �

! b0 b1 b2
� � �1 n p

0 1 0

0 0 1

0
B@

1
CA; ð12Þ

m1 :

1 0 0

q �1 r

0 0 1

0
B@

1
CA; m2 :

1 0 0

0 1 0

s t �1

0
B@

1
CA

as involutive transforms with free parameters for a while. This

means in our conventions that we apply row–column multi-

plication for matrices; in the i0th row of m0 stand the coordi-

nates of the m0 image of basis vector ai; in the j0th column of

m0 are the coordinates of the m0 image of basis form bj. Thus,

the transform m0 acts on the vectors (points) and on the forms

(lines) as well.

The coordinate transforms are induced, for example, as

m0 : x0 x1 x2
� �

! x0 x1 x2
� � �1 n p

0 1 0

0 0 1

0
B@

1
CA

for x ¼ xiai 2 V3 ðEinstein conventionÞ;

m0 :

u0

u1

u2

0
B@

1
CA!

�1 n p

0 1 0

0 0 1

0
B@

1
CA

u0

u1

u2

0
B@

1
CA for u ¼ bjuj 2 V3:

In general, we apply matrix pairs, inverse to each other, with

determinants �1 (or þ1, later for orientation-preserving

transforms) in a natural manner.

To satisfy all the relations of (7), we take first the products

m0m2 :

�1þ ps nþ pt �p

0 1 0

s t �1

0
B@

1
CA;

m0m1 :

�1þ nq �n nrþ p

q �1 r

0 0 1

0
B@

1
CA; ð13Þ

m1m2 :

1 0 0

qþ rs �1þ rt �r

0 0 �1

0
B@

1
CA:

These have to be of order 2, a, b, respectively. Thus,

p ¼ s ¼ 0;�2þ nq ¼ cos
2�

a
; �2þ rt ¼ 2 cos

2�

b
;

i.e. nq ¼ 4 cos2 �

a
; rt ¼ 4 cos2 �

b
;

and n ¼ q ¼ 2 cos
�

a
; r ¼ t ¼ 2 cos

�

b

can be assumed by the projective freedom, as shown by the

type of basis change ai0 ¼ cai; b
i0
¼ bi 1

c. Indeed, the matrices

m0; :

�1 2 cos �a 0

0 1 0

0 0 1

0
B@

1
CA;

m1 :

1 0 0

2 cos �a �1 2 cos �b

0 0 1

0
B@

1
CA ð14Þ

m2 :

1 0 0

0 1 0

0 2 cos �b �1

0
B@

1
CA:

satisfy the relations (7). For example, the 2a images of triangle

FG simply (without gap and overlap) surround the starting

vertex A2.

1.4. To characterize the realizing projective metric plane for

S2, E2 or H2 tilings, we look for a symmetric linear polarity

ð�Þ : V3 ! V3; bi
! bi

� :¼ bijaj with bij ¼ bji;

which is invariant under m0;m1;m2 above.

Here and later on, we apply the Einstein sum convention

for indices i; j ¼ 0; 1; 2. Fig. 2 also shows how to assign a pole

vector b1
� :¼ b1 ¼ b1jaj to the polar form b1, thus the pole

point ðb1Þ to the polar line ðb1
Þ. By this we shall first have a

symmetric scalar product in V3:

h ; i : V3 � V3 ! R; hu; vi ¼ ðu�vÞ

¼ hbiui; b
jvji ¼ huib

i; bjvji ¼ huib
irar; b

jvji ð15Þ

¼ uib
ir�j

rvj ¼ uib
ijvj

(with Kronecker’s �j
r), i.e. by coordinates, then comes

orthogonality of lines etc., as usual. For example, the lines ðuÞ

and ðvÞ are orthogonal, i.e. ðvÞ is incident to the pole ðu�Þ of

line ðuÞ, iff hu; vi ¼ 0.
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The signature of h i, i.e. the signs in its diagonal form, will

be determined later:

(a) spherical (S2) metric with signature ðþ þ þÞ,

(b) Euclidean (E2) metric with signature ð0þþÞ,

(c) hyperbolic (H2) metric with signature ð� þ þÞ.

Now the image coordinates of basis forms stand in the matrix

columns of m0is, respectively. The invariance of the polarity

above under m0 (for example) means that a line and its m0

image have poles that are also m0 images to each other. Thus

we obtain linear equations for the above polarity matrix ðbijÞ.

For example, from m0 by (14) we get

c0b00
¼ ð�1Þð�1Þb00;

c0b01 ¼ ð�1Þ2 cos
�

a
b00 þ ð�1Þð1Þb01;

c0b02
¼ ð�1Þð1Þb02;

c0b11 ¼ 4 cos2 �

a
b00 þ 4 cos

�

a
b01 þ b11;

c0b12 ¼ 2 cos
�

a
b02 þ b12

c0b22
¼ b22; 0< c0 2 R:

ð16Þ

Similarly, from m1 and m2, we shall have the (non-zero) matrix

of the invariant symmetric polarity (scalar product) by

bij
¼

1 � cos �a 0

� cos �a 1 � cos �b

0 � cos �b 1

0
B@

1
CA;

i.e. the quadratic form

hu; ui ¼ uib
ijuj ¼ u0u0 � 2 cos

�

a
u0u1

þ u1u1 � 2 cos
�

b
u1u2 þ u2u2

¼ u2 � cos
�

b
u1

� �2

þ sin
�

b
u1 �

cos �a
sin �

b

u0

� �2

þ
cos ð�a �

�
bÞ

sin2 �
b

sin
�

a
þ
�

b
�
�

2

� �
u0u0

ð17Þ

invariant under m0;m1;m2. Indeed, we have obtained the

signature, i.e. the signs of square terms as desired, see formula

(8). Moreover, a coordinate transform (by corresponding basis

transform, according to the index position, Schouten’s primed

index convention)

u00

u10

u20

0
B@

1
CA ¼

	jKj1=2= sin �
b 0 0

� cos �a= sin �
b sin �

b 0

0 � cos �b 1

0
B@

1
CA

u0

u1

u2

0
B@

1
CA

or by the inverse matrix

x00 x10 x20
� �
¼ x0 x1 x2
� � sin �

b=	 jKj
1=2 0 0

cos �a=	 jKj
1=2 sin �

b 1= sin �
b 0

cos �a cot �b=	 jKj
1=2 cot �b 1

0
B@

1
CA
ð18Þ

helps us to turn to a Cartesian (homogeneous) projective

coordinate system if

K ¼ cos
�

a
�
�

b

� �
sin

�

a
þ
�

b
�
�

2

� �>
<

0
�S2

�H2 ð19Þ

for non-Euclidean planes S2
ð>;þÞ and H2ð<;�Þ, respectively.

The cases where K ¼ 0 yield Euclidean tilings, and then (e.g.)

u00

u10

u20

0
B@

1
CA ¼

1= sin �
b 0 0

� cos �a= sin �
b sin �

b 0

0 � cos �b 1

0
B@

1
CA

u0

u1

u2

0
B@

1
CA

and

x00 x10 x20
� �

¼ x0 x1 x2
� � sin �

b 0 0

cos �a sin �
b 1= sin �

b 0

cos �a cot �b cot �b 1

0
B@

1
CA;

moreover x10=x00
¼: x and x20=x00

¼: y; if x00
6¼ 0; ð20Þ

provide also a usual rectangular Cartesian system fbj0
g, fai0 g as

dual basis pair, according to the index positions and to the

analogous formulas above.

All these formulas, implemented on a computer, produce

the tilings on the screen. For example, with K< 0, the

formulas (17)–(19) produce the Cayley–Klein model of a

Bolyai–Lobachevskian hyperbolic plane H2 in a circle disc

(Fig. 3) of radius

sin
�

b

.
jKj1=2 :¼ �; ð21Þ

see e.g. Bölcskei & Molnár (1999) and Bölcskei (2003).

All these arguments will be much more complicated in the

3-space where the two-dimensional ðS2, E2 and H2Þ situations

will also be applied for some stabilizers. But, in principle, we

shall follow the same strategy. I ask for patience of the inter-

ested reader. The topic is far from easily understandable, but it

may help in better imagination of non-Euclidean geometries

in describing real crystals. The author and other colleagues

think that non-Euclidean geometries might play a similar role

in contemporary crystallography (e.g. in better understanding

quasicrystals and fullerenes), as quantum physics did in the

last century. The mathematical difficulties might be similar(?!).

We mention only an initiative of Alan L. Mackay: how to

apply hyperbolic plane geometry H2 to describing triply

periodic minimal surfaces (TPMS) in Euclidean space E3

Acta Cryst. (2005). A61, 542–552 Emil Molnár � Combinatorial construction of tilings 545

research papers

Figure 3
A symbolic picture on the Archimedean tiling T ð2a; bÞ with a ¼ 5, b ¼ 4
in the hyperbolic plane H2



(Molnár, 2001, 2002; Hyde & Ramsden, 2003; Robins et al.,

2004).

2. The rhombohedron tiling as an introductory example

We consider a rhombohedron T, i.e. a parallelepiped with

equal length spanning edge vectors (Fig. 4), and its tiling T

under the symmetry group �, generated by two plane reflec-

tions m0, m1 and two half-turns r2, r3 as follows:

m0 : A1A2A3 ! A1A2A3;

m1 : A0A2A3 ! A0A2A3;

r2 : A0A1A3 ! A0A3A1;

r3 : A0A1A2 ! A1A0A2:

ð22Þ

Thus, our � will act transitively on the faces of the rhombo-

hedron tiling T (Dress et al., 1993). To illustrate this, we

consider the barycentric subdivision of T (Fig. 4). Each

barycentric simplex C has 3, 2, 1, 0 labelled vertices as centres

of three-, two-, one-, zero-dimensional faces of T . � acts also

on the barycentric simplices. Thus we get four simplex orbits.

For example, C1 ¼ 01112131 ¼ A3A03A13A2 represents an

orbit denoted by D1. The i face of any C is opposite to its i

vertex, i 2 f0; 1; 2; 3 ¼ dg ¼ I as index set. Thus, the adja-

cency relations �i,

�0 : � � � � � � ; �1 : - - - -; �2 : ; �3 : ��;

and the so-called D diagramD (Fig. 5), as well as the D-matrix

function (Dress et al.,1993) will be introduced by

MðkÞ ¼ mijðkÞ ¼

1 4 2 2

4 1 3 2

2 3 1 4

2 2 4 1

0
BBB@

1
CCCA; ð23Þ

k 2 fD1;D2;D3;D4g ¼ D; i; j 2 I ¼ f0; 1; 2; 3g:

For example, m23ðkÞ ¼ 4 means how many rhombohedra

(topologically, as cubes) surround any edge in the tiling T .

Definition 1. A D diagram D with a D-matrix function M, with

certain requirements as given below (Dress, 1987; Dress et al.,

1993), is called a D symbol ðD;MÞ (in honour of B. N. Delone,

M. S. Delaney and A. W. M. Dress).

ðiÞ miiðDÞ ¼ 1 for each D 2 D and i 2 I ¼ f0; 1; 2; 3g;

ðiiÞ mijðDÞ ¼ mijð�iDÞ ¼ mjiðDÞ 
 2; i> j 2 I; D 2 D;

ðiiiÞ mijðDÞ ¼ 2 if jj� ij 
 2; D 2 D;

ðivÞ ð�j�iÞ
mijðDÞðDÞ ¼ D; D 2 D; i; j 2 I:

As we can see, the requirements just guarantee (see e.g.

Molnár, 1996) that a D symbol now codes an orbifold by a

triangulated fundamental domain.

Orbifold is the concept that generalizes the structure of

orbits under a space group. Below we shall give [after formula

(27)] also a more formal definition but the examples will be

satisfactory and more important for us now (Delgado-

Friedrichs & Huson, 1997; Johnson et al., undated).

We remark that the face transitivity of the � action on our

rhombohedron tiling T can be checked only on the D diagram

(Fig. 5). If we cancel the two-dimensional adjacencies �2, i.e.

the continuous ( ) edges from the D diagram, then there

remains one connected component. In the same way, our

ðT ;�Þ is transitive on the solids, edges, vertices of T as well

(see Fig. 4). Our simplex A0A1A2A3 is just a fundamental

domain F for the E3 space group No. 166, R�33m = �. Note that

our rhombohedron is just the unit lattice cell for the transla-

tion lattice of R�33m and we have a free affine parameter for our

rhombohedron, stretching it along its solid diagonal ðA3A2Þ.
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Figure 4
The rhombohedron tiling under space group No. 166 R�33m. Encircled 01,
023, 04, 112, 134, 2, 3 indicate the zero-, one-, two-, three-dimensional
centres of our rhombohedron, respectively, as vertices of the barycentric
simplices C1 ¼ 01112131, then of C2;C3;C4. The union of these simplices
is A0A1A2A3, forming the fundamental simplex of space group � ¼ R�33m.
E0;E11 ;E12 ;E13 ¼ ðe3Þ denote the usual coordinate simplex to the
rhombohedron.

Figure 5
D diagram for the rhombohedron tiling.

Figure 6
Schlegel diagram and vertex domains.



3. A parametrized orbifold as generalization

The fundamental simplex tiling ðT ;�Þ, now by the simplex

T :¼ A0A1A2A3 and � ¼ R�33m, generated in equation (22)

and described in Fig. 5 and in formula (23) above, can be

generalized to a parametrized orbifold Oða; b; c; dÞ. Its group

will be denoted by

�5ð2a; 8b; 4c; 4dÞ; ð24Þ

see Fig. 6 (from Molnár et al., 1997, 2005) as a Schlegel

diagram of our simplex in Fig. 4. Here

a : ; b : ; c : - - - - -; d : ......... ð25Þ

denotes the rotational orders about the corresponding (half)

edges. Any (half) edge of an equivalence class under �5 will be

surrounded by

2a; 8b; 4c; 4d ð
 3; in generalÞ ð26Þ

�5-image simplices, respectively, in the fundamental tiling

ðT ;�5Þ. This just forms the so-called universal covering space

of our generalized orbifold under the fundamental covering

group �5 above (Molnár, 1996; Molnár et al., 1997) with

presentation

�5ð2a; 8b; 4c; 4dÞ :¼
�
m0;m1; r2; r3 1

¼ m2
0 ¼ m2

1 ¼ r2
2 ¼ r2

3 ¼ ðm0m1Þ
a

¼ ðm1r2r3r2m1r2r3r2Þ
b
¼ ðm0r2m0r2Þ

c

¼ ðm0r3m1r3Þ
d
�
: ð27Þ

Our generalization means: Oða; b; c; dÞ is a compactified

topological space where each point has a neighbourhood

homeomorphic to a ball factorized either by a spherical ðS2
Þ

finite group or by a Euclidean ðE2Þ plane (crystallographic)

group or by a hyperbolic ðH2Þ plane (cocompact) group. Our

illustration (Fig. 6) shows these phenomena for the (symbolic)

neighbourhoods of vertices with stabilizer groups

�0
ðA2Þ ¼ 2�ad; with 1 ¼

<

>

1

a
þ

1

d
; and

�0
ðA0;A1;A3Þ ¼ 2�acdb; with 3 ¼

<

>

1

a
þ

1

c
þ

1

d
þ

1

b
: ð28Þ

We have applied Macbeath–Conway’s notations for plane

(cocompact, i.e. with compact fundamental domain) groups

with S2
ð<Þ, E2 ð¼Þ, H2 ð>Þ conditions, respectively.

These notations are based on Poincaré’s classification of

compact surfaces [either with orientable genus og, g handles,

or with non-orientable genus �g, g cross-caps (circles with

identified opposite points), and with boundary components

indicated and separated by � stars]. Macbeath in the late

sixties refined this to the classification of plane orbifolds,

where rotation centres (as singular points) of some orders are

listed (if any occur, up to their permutations). Moreover,

dihedral reflection corners may occur at the boundary

components (between the stars): either in cyclic order if the

surface is orientable, or ‘reverse cyclically’ if the surface is

non-orientable. The boundary components (if they occur) are

given up to their permutations, again (e.g. Molnár et al., 2005).

For example, 2�ad above means a sphere (of genus zero)

with one boundary component. Moreover, there occur a two-

centre of angular neighbourhood 2�=2 and two dihedral

corners: one of angle �=a and another of angle �=d on the

boundary component.

In our plane example in x1, G ¼ p4mm ¼ �244, and the

orbifold E2=G is the triangle disc with angles �=2; �=4; �=4. In

the generalization, we introduced G ¼ �2ab and the disc of

angles �=2; �=a; �=b in the corresponding plane by formula

(8).

For example, ða; b; c; dÞ ¼ ð3; 1; 1; 1Þ provides our starting

example where �0ðA2Þ ¼ 2�3 ¼ �33m, �0ðA0;A1;A3Þ ¼ 2�3 ¼
�33m, both are the well known point group of order 12. But

ð2; 1; 1; 1Þ and ða; 1; 1; 1Þ for 3< a 2 N also provide us orbi-

folds of non-Euclidean realizations (in S2
�R and in H2�R,

respectively, see Fig. 7).

Our aim is to construct metric realizations for our orbifolds

Oða; b; c; dÞ for those parameters that yield spherical ðS2
Þ or

Euclidean ðE2Þ (cocompact) plane groups as stabilizers for the

vertices of our fundamental simplex. Then �5 will be an

isometry group, acting discontinuously on the tiling T with

metric presentation (27).

4. Constructing projective metric 3 sphere PS3
ðR; h ; iÞPS

3
ðR; h ; iÞ

The construction will be sketched in three main steps (Molnár,

1997), according to plane situations.

4.1. We introduce a projective coordinate simplex (Fig. 4)

just by A0ða0Þ, A1ða1Þ, A2ða2Þ, A3ða3Þ, where the vector basis

faig spans a real vector space V4ðRÞ. This is in analogy to Fig. 2.

Then the dual form basis fbj
g with ðaib

j
Þ ¼ �j

i (the Kronecker

symbol) describes any simplex plane bj ¼ AiAkA‘

ðfi; j; k; ‘g ¼ f0; 1; 2; 3gÞ and spans the dual form space

V4
� ¼ V4.

Thus, the plane reflection m0 in b0 ¼ A1A2A3 is given by

[our convention (!)] row–column multiplication
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Figure 7
�5ð2a; 8b; 4c; 4dÞ, ða; b; c; dÞ ¼ ða; 1; 1; 1Þ, 2 � a 2 N. Euclidean ða ¼ 3Þ,
H2 � R tilings and an S2

� R tiling for a ¼ 2 are indicated.



m0 :

a0

a1

a2

a3

0
BBB@

1
CCCA!

�1 n p q

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

a0

a1

a2

a3

0
BBB@

1
CCCA

for points (vectors), or

b0 b1 b2 b3
� �

! b0 b1 b2 b3
� � �1 n p q

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

for planes (forms). ð29Þ

These define the involutive (now) projective collineation

fixing pointwise the above plane. We have a projective

freedom as ‘non-usual’ now. Namely, any vectors x and y ¼ cx

for 0< c 2 R determine the same point ðxÞ ¼ ðyÞ of the

projective 3 sphere PS3
ðRÞ. Similarly, the forms ðuÞ and

uð1=cÞ ¼ v define the same (oriented) plane (2 sphere)

ðuÞ ¼ ðvÞ in PS3. The real parameters n, p, q will be fixed later.

Analogously, the further involutive generators will be

described with some parameters:

m1 :

1 0 0 0

t �1 r s

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

r2 :

1 0 0 0

0 0 0 u

w v �1 uv

0 1
u 0 0

0
BBB@

1
CCCA; r3 :

0 x 0 0
1
x 0 0 0

0 0 1 0

y xy z �1

0
BBB@

1
CCCA;

where 0< u and 0< x. ð30Þ

4.2. The relations in the presentation (27) will fix certain

parameters by matrix equations. For instance, the product

matrix is

ðm0m1Þ :

�1 n p q

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

1 0 0 0

t �1 r s

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

¼

�1þ nt �n nrþ p nsþ q

t �1 r s

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA: ð31Þ

This has to be a rotation of order a, fixing pointwise the axis

A2A3. From the matrix theory (trace formula), we know that

ðm0m1Þ
a
¼ 1 allows one to choose

n ¼ t ¼ 2 cos
�

a
; now 2 � a 2 N: ð32Þ

Similarly, the relations ðm0r2m0r2Þ
c ¼ 1 ¼ ðm0r3m1r3Þ

d imply

polynomial equations for unknown parameters:

ðpw � 2Þ2 ¼ 4 cos2 �

c
for 2 � c;

and p ¼ w ¼ 0; q ¼ nu if c ¼ 1;

ðqy� 2Þðsxy� 2Þ ¼ 4 cos2 �

d
for 3 � d;

sxy ¼ 2; q ¼ sx for 2 ¼ d;

and y ¼ 0; q ¼ �xs; p ¼ xðrþ szÞ;

n ¼ xxt for 1 ¼ d: ð33Þ

The most complicated ðm1r2r3r2m1r2r3r2Þ
b ¼ 1 implies

uvz ¼ 2; r ¼ uz; s ¼ uðxt þ xrw� 2Þ for 1 ¼ b

and 4 cos2 �

2b
¼ ðuvz� 2Þðrv� 2Þ for 2 � b ð34Þ

by careful computations and projective freedom as indicated

later.

4.3. We determine a symmetric linear polarity (Einstein’s

index convention!)

ð�Þ : bi
! bi

� :¼ bijaj ðwith bij
¼ bji
Þ; and so by

h ; i : V4 � V4 ! R;

hu; vi ¼ ðu�vÞ ¼ urb
rj
ðajb

s
Þvs ¼ urb

rj�s
j vs ¼ urb

rsvs ð35Þ

a symmetric scalar product of forms u ¼ brur and v ¼ bsvs will

be introduced, so that they will be invariant under the

generator matrices (29) and (30), completely analogous to the

plane cases but with more computations and complications.

Such ‘eigenvalue–eigenvector’ problems

ðar
i Þðb

ijÞðas
j Þ ¼ cðbrsÞ

for every generator ðar
i Þ in equations ð29Þ; ð30Þ ð36Þ

and possibly different eigenvalues c’s provide us with the

symmetric matrix ðbijÞ, iff a non-trivial solution exists. If not,

then we may face difficult problems as we see in Molnár (1997)

and Molnár et al. (1997, 2005) and later in this paper. With a

non-trivial ðbijÞ, its signature (i.e. the signs of its eigenvalues)

and other invariant elements (fixed points and planes, for

example) will determine a possible metric realization in (29),

(30) and (36) by the table (given in Fig. 8) from Molnár (1997)

and Molnár et al. (2005).

5. Our solution for orbifold Oð3; 1; 1; 1ÞOð3; 1; 1; 1Þ

For instance, ða; b; c; dÞ ¼ ð3; 1; 1; 1Þ, our starting example, by

the relations (27) yields the generators in equation (37) below.

The solution of equations (32), (33) and (34) allows a

projective basis change b3 1
u ¼: b30 , then ua3 ¼: a30 ; b2v ¼: b20 ,

1
v a2 ¼: a20 , and we get
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m0 :

�1 1 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA; m1 :

1 0 0 0

1 �1 2 �1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

r2 :

1 0 0 0

0 0 0 1

0 1 �1 1

0 1 0 0

0
BBB@

1
CCCA; r3 :

0 1 0 0

1 0 0 0

0 0 1 0

0 0 2 �1

0
BBB@

1
CCCA;

moreover, the

polarity matrix

with parameter �:

ðbij
Þ ¼

1 � 1
2 0 � 1

2

� 1
2 1 �1 1

2

0 �1 1þ � ��

� 1
2

1
2 �� �

0
BBB@

1
CCCA:
ð37Þ

Thus, our �5-invariant (scalar product and) quadratic form will

be hbr�r; b
s�si, i.e.

�ib
ij�j ¼ �0�0 � �0�1 � �0�3 þ �1�1 � 2�1�2

þ �1�3 þ ð1þ �Þ�2�2 � 2��2�3 þ ��3�3

¼ ð�0 �
1
2 �1 �

1
2 �3Þ

2 þ 3
4 ð�1 �

4
3 �2 þ

1
3 �3Þ

2

þ ð�� 1
3Þð�2 � �3Þ

2 ð38Þ

of signature ð0 þ þþÞ iff �> 1
3. Then we shall have a Eucli-

dean metric. The plane e0 :¼ b01þ b11þ b21þ b31 is the

common invariant plane of the generators; it will be chosen

as the ideal plane !1ðe
0Þ at infinity. A3ða3Þ ¼: E0ðe0Þ,

A0ða0Þ ¼: ðe0 þ e1Þ, A1ða1Þ ¼: ðe0 þ e1 þ e2Þ, A2ða2Þ ¼:

ðe0 þ
1
2 e1 þ

1
2 e2 þ

1
2 e3Þ will define the traditional rhombo-

hedral coordinate system (Fig. 4): E0ðe0Þ, E11 ðe1Þ, E12 ðe2Þ,

E13 ðe3Þ, with the origin E0 and the ideal points E11 , E12 , E13 of

the coordinate axes, respectively.

In this coordinate system, we finally get m0, m1, r2, r3 as in

International Tables for Crystallography (Hahn, 2002), space

group No. 166 R�33m:

m0 : ðx; y; zÞ 7! ðy; x; zÞ; i.e. with x0 ¼ 1

ðx1; x2; x3Þ ! ðx1; x2; x3Þ

0 1 0

1 0 0

0 0 1

0
B@

1
CA ¼ ðx2; x1; x3Þ

and m1 : ðx; y; zÞ 7! ðx; z; yÞ;

r2 : ðx; y; zÞ 7! ð�yþ 1; �xþ 1; �zÞ;

r3 : ðx; y; zÞ 7! ð�zþ 1; �yþ 1; �xþ 1Þ:

ð39Þ

Furthermore, the polarity ð�Þ will be given by uie
ijuj where

ðeij
Þ ¼

1

4

0 0 0 0

0 1þ � �1þ � �1þ �

0 �1þ � 1þ � �1þ �

0 �1þ � �1þ � 1þ �

0
BBB@

1
CCCA;

thus cosðei
Þðej
Þ ¼

�eij

ðeiiejjÞ1=2
¼
�� 1

�þ 1
> 1

2 ;

because 1
3 <�; and cosðeiÞðejÞ ¼

1
2 ð1� �Þ<

1
3 ð40Þ

can also be derived. Hence we see a geometric meaning for the

(stretching) parameter � as well. It characterizes the rhom-

bohedral lattice in the space group R�33m. If � � 1
3, the metric is

no longer convenient. There will be exceptional elements in

the tilings of the corresponding ð0 0 þ þÞ or ð0 � þþÞ

geometries which are now out of our scope.

6. Further discussion

Now we consider Figs. 7, 9, 10 and 11 and report the further

cases (Molnár et al., 1997, 2005).

Acta Cryst. (2005). A61, 542–552 Emil Molnár � Combinatorial construction of tilings 549

research papers

Figure 9
ða; b; c; dÞ ¼ ð2; 1; 2; 1Þ, H3 tiling, A0;A1;A3 ideal vertices, A2 is proper.

Figure 8
Table for the eight homogeneous geometries.



ða; b; c; dÞ ¼ ð2; 1; 2; 1Þ leads to a tiling in the Bolyai–

Lobachevskian space H3. Our computations yield the invari-

ant quadratic form

�0�0 � �0�2 þ �1�1 � �1�2 þ
1
2 �2�2 � �2�3 þ �3�3

¼

�
�0 �

1
2 �2

�2

þ

�
�1 �

1
2 �2

�2

þ

�
�3 �

1
2 �2

�2

� 1
4 �2�2

of signature ð� þ þþÞ: ð41Þ

Thus we get a hyperbolic simplex: A0, A1, A3 are ideal vertices

at the absolute, A2 is proper in H3. The face angles of our

simplex will be

�01
¼ �03

¼ �13
¼
�

2
; �02

¼ �12
¼ �23

¼
�

4
; ð42Þ

as can be calculated by (41). For example,

cos�02
¼
�b02

ðb00b22Þ1=2
¼

1
2

ð1� 1
2Þ

1=2
¼

21=2

2
ð43Þ

shows the angle �02 between the faces m0, r2 at the edge - - - - -

in Fig. 6, as the parameter c ¼ 2 also involves this fact.

We only mention that ða; b; c; dÞ ¼ ð2; 2; 1; 1Þ and

ð2; 1; 1; 2Þ both lead to metrically non-realizable tilings by a

splitting effect along an occurring Euclidean 2-orbifold

E2=pmm (Figs. 10–11). The two parts are an E3 orbifold and an

H2�R orbifold in the first case and two H2�R orbifolds in the

second case.

Finally, ða; 1; 1; 1Þ leads to an S2
�R tiling, iff a ¼ 2; and to

infinitely many H2�R tilings, iff 4 � a 2 N. These ‘intuitively

easy’ cases need some extra machinery, the so-called projec-

tive–inversive models of these geometries, indicated in Molnár

(1997), not detailed more here (Fig. 7).

Our method seems to be new as providing effective

Euclidicity criteria for combinatorially given tilings modelling

possible real crystal structures (Johnson et al., undated).

Moreover, the method can be used for other geometries

using the table given in Fig. 8 and by an ‘interactive algorithm’

as follows in the next section. The barriers of the algorithm are

obvious, in general, but it can work for any concrete finite D

symbol (small enough) or orbifold as our results show.

All these are related to the Thurston conjecture. The

Poincaré conjecture is a special case (Molnár et al., 2005), see

also x7.

7. A strategy for finding Euclidean 3-tiling (sketch)

The previous Euclidicity criteria occur at the following steps.

7.1. Crystal problems will be formulated as tiling problems

and as barycentric subdivisions, and hence as D symbols in

some model chosen adequately (?). For example, we look for

tilings with 1–1–1–1 equivalence classes of vertices, edges,

faces, solids, respectively. The computer program lists e.g. the

D diagram in Fig. 5 as we mentioned (Dress et al., 1993;

Molnár, 1996).

7.2. The �i, �j operations for any i, j 2 I ¼ f0; 1; 2; 3g allow

us to choose a convenient matrix function mijðDÞ, D 2 D, on

the D set D (vertices of the D diagram). Any subdiagram

component cDij describes then a rotation about an ij edge

(class) at the meeting of i and j faces, respectively, of a bary-

centric simplex (class). The corresponding rotational order has

to be 1, 2, 3, 4, 6 by the Barlow condition.

7.3. The �i, �j, �k operations, i.e. cancelling the �‘ operation

fi; j; k; ‘g ¼ f0; 1; 2; 3g, describe any connected subdiagram

component cDijk ¼: cD
‘ with the matrix function cM‘, and

hence the stabilizer subgroup of the corresponding ‘ centre

(class). This stabilizer has to be a (finite) crystallographic point

group by the corresponding two-dimensional D symbol

ðcD
‘; cM‘Þ.

7.4. The above steps lead from a D symbol to a simplicial

(triangulated) fundamental domain F with pairing of the

remaining (still free) triangle faces ofF , i.e. to an orbifold with

its possible singular points where the stabilizers are (not trivial

here, in general) finite point groups.

For the 219 non-isomorphic Euclidean space groups, the

orbifold pictures of the direct space groups (orientable orbi-

folds) have already been determined by Dunbar (1988).

Moreover, for any space group, the orbifold ‘skeleton’

(without indicating knots and links on it) can be read off the

Wyckoff positions from International Tables for Crystal-

lography (Henry & Lonsdale, 1969; Hahn, 2002). We mention

here that this last problem was solved and computerized when

the author visited Bielefeld University (1989–1991) and

worked in the team of A. W. M. Dress. Let only Dress et al.
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Figure 11
ða; b; c; dÞ ¼ ð2; 1; 1; 2Þ, splitting to H2 � RþH2 � R case.

Figure 10
ða; b; c; dÞ ¼ ð2; 2; 1; 1Þ, splitting to E3 þH2 � R case.



(1993), Delgado-Friedrichs (1994, 2003), Delgado-Friedrichs

& Huson (1997) be mentioned here.

These preliminary steps may help in the following compu-

tational procedure which is of very high complexity because of

the nature of the problem and it can directly be applied in each

case. Thus some uncertainties, mentioned in Delgado-Frie-

drichs (1994) can also be excluded.

7.5. Taking the triangulated canonical (Molnár, 1996)

fundamental domain F to our orbifold O by the D symbol

ðD;MÞ above, we start with embedding F into a real projec-

tive metric sphere PS3
ðR; h ; iÞ.

Now, if it is possible, the scalar product h ; i will be of

signature ð0 þ þþÞ for the form space V4, describing the 2

planes of E3 � PS
3. A form e0 to the above 0 in the signature

will be orthogonal to all forms of V4, and hence it char-

acterizes the ideal plane !1 of E3 to be constructed.

This is analogous to x5. But now, in general, the projective

coordinate simplex, denoted e.g. by C0ðc0ÞC1ðc1ÞC2ðc2ÞC3ðc3Þ,

will be chosen to be a first barycentric simplex 1C 2 1D 2 D of

the D symbol in a canonical way (Molnár, 1996). (This is
1C ¼ A3A03A13A2 in Fig. 4.) The canonical gluing procedure,

of other barycentric simplices to form F , implies the face-

pairing mappings as projective collineations of PS3. These

collineations can be expressed (by matrices) for points, as in

V4 spanned by the basis fcig of the coordinate simplex and for

planes in its dual space V4 spanned by the dual basis fd j
g with

ðcid
j
Þ ¼ �j

i (Kronecker symbol).

These generating collineations will be given by 4� 4

matrices up to projective freedom and with unknown

parameters as in x4. Projective freedom brings a lot of

simplification. For example, the determinants of generating

matrices can be taken 	1. In the dual-basis pair fcig, fd
jg, we

may change ck0 :¼ �ck, dk0
¼ dk 1

�, 0<� 2 R for any

k ¼ k0 2 f0; 1; 2; 3g.

7.6. The generating matrices make it possible to express any

vertex and any (triangle) face plane of F in the dual basis pair

fcig, fd
j
g, possibly in a complicated but straightforward way, by

computer. Moreover, the defining relations for the unknown

space group �, chosen for the edge classes of F in 7.2 with

corresponding rotational orders [as ða; b; c; dÞ in x4], provide

us matrix equations for determining the parameters in the

generating matrices. Such an equation expresses that a

product of generators is a rotation of given order about an

edge of F which is expressible in the coordinate simplex
1C ¼ C0C1C2C3. This is a standard method, yielding (possibly)

complicated polynomial equations, by the nature of the

problem, in general. See 4.2. These polynomial equations may

involve accurate fine numerical solutions, but symbolic

computations can be satisfactory as well.

7.7. Now comes the linear equation system for the coeffi-

cients of the scalar product h ; i defined by ðhd i; d j
iÞ ¼: ðdijÞ

[as in 4.3 for ðbijÞ]. This h ; i has to be invariant under any

generating matrix ða
j
iÞ with detða

j
iÞ ¼ 	1 iff ðar

i Þðd
ijÞðas

j Þ ¼ ðd
rsÞ.

This non-trivial symmetric matrix ðdijÞ has to be of signature

ð0 þ þþÞ as indicated at the beginning of 7.5. The symbolic

computation may help, again. Free parameters can occur. Only

trivial solution ðdijÞ ¼ ð0Þ may refer to splitting phenomena as

our Fig. 10 shows. Then a connected sum (denoted by þ here)

of different geometric pieces may occur, surprisingly. This

splitting recognition has not been computerized yet and it

seems to be very difficult.

We can roughly formulate Thurston’s geometrization

conjecture that every orbifold (manifold) – after occasional

splitting procedure along some spherical (S2) and Euclidean

(E2) 2-orbifolds, and after some two- or one-dimensional

changing, if necessary – can be equipped with a homo-

geneous Riemannian metric of the eight Thurston geom-

etries in our table (Fig. 8). Thus our method is applicable

modulo Thurston conjecture. It is not excluded yet that an

orbifold by D symbol will represent a counter-example. In our

papers (Molnár et al., 1997, 2005), we mentioned also other

phenomena to be examined by our method which also promise

success (see Molnár, 1993; Molnár & Prok, 1994; Molnár et al.,

1998). We emphasize that it is enough – if the Thurston

conjecture is true – to deal with a so-called minimal D symbol

or, equivalently, with maximal group � ¼ Aut T whose metric

realization above surely involves the realization of its

‘symmetry breakings’ where �<Aut T . Such a smaller group

can be assigned with an asymmetric mark in its fundamental

domain and in its images or, if possible, by deforming some

faces or edges to be curved, conveniently according to �.

Assume that:

1. a non-trivial ðdijÞ above exists;

2. the generating matrices can be metrically adjusted and

they do not have any common fixed point, to exclude S2
� R

geometry by our table (Fig. 8);

3. these generators metrically tile the neighbourhood of any

edge of F with the images of F (without gaps and overlaps) as

the corresponding relation dictates.

Then our generators will be isometries for a group � acting

on the Euclidean space E3 :¼ P3
n ðe0Þ.

Here the projective space P3 is obtained from PS3 by

unifying the opposite rays ðxÞ and ð�xÞ, x 2 V4, and by

unifying the ‘opposite’ planes ðuÞ and ð�uÞ u 2 V4. (Zero

vector and zero form have been excluded, of course.) The

ideal plane ðe0Þ (to 0 in the signature) and its ideal points ðzÞ

with ðze0Þ ¼: z0 ¼ 0 will be excluded from P3 as usual. This

was followed in our example in x5.

Our algorithm was especially applied for the complete

classification of simplex tilings in Molnár et al. (1997) and

Molnár et al. (2005). Let us only extract here that there are 26

(non-equivariant) fundamental tilings in E3 by compact

simplices under 20 space groups. This result was obtained

in 1988 in a joint work with István Prok (Molnár &

Prok, 1988). Of course, computer implementations would

be very useful. We are working on these problems with

colleagues.

This paper is based on the lecture given by the author at the

Satellite meeting of ECM-22 Crystallography at the start of the

21st century: Mathematical and Symmetry Aspects, organized

by Massimo Nespolo, http://www.lcm3b.uhp-nancy.fr/

mathcryst/satellite.htm, in Budapest, Hungary, 24–26 August

2004. Here only the most relevant aspects are mentioned.

Other topics can be found in the selection of references.
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manuscript, and Attila Bölcskei for designing Fig. 3.
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